Variable integral and smooth exponent Triebel-Lizorkin spaces associated with a non-negative self-adjoint operator

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundedness of Rough Integral Operators on Triebel-lizorkin Spaces

We prove the boundedness of several classes of rough integral operators on Triebel-Lizorkin spaces. Our results represent improvements as well as natural extensions of many previously known results. 2010 Mathematics Subject Classification: Primary: 42B20; Secondary: 42B15, 42B25.

متن کامل

Hardy Spaces Associated with Non - Negative Self - Adjoint Operators IMI

Maximal and atomic Hardy spaces Hp and H A, 0 < p ≤ 1, are considered in the setting of a doubling metric measure space in the presence of a non-negative self-adjoint operator whose heat kernel has Gaussian localization and the Markov property. It is shown that Hp = H A with equivalent norms.

متن کامل

Hardy Spaces Associated with Non-negative Self-adjoint Operators

Maximal and atomic Hardy spaces Hp and H A, 0 < p ≤ 1, are considered in the setting of a doubling metric measure space in the presence of a non-negative self-adjoint operator whose heat kernel has Gaussian localization and the Markov property. It is shown that Hp = H A with equivalent norms.

متن کامل

On dilation operators in Triebel-Lizorkin spaces

We consider dilation operators Tk : f → f(2 k ·) in the framework of Triebel-Lizorkin spaces F s p,q(R ). If s > n max ` 1 p − 1, 0 ́ , Tk is a bounded linear operator from F s p,q(R ) into itself and there are optimal bounds for its norm. We study the situation on the line s = n max ` 1 p − 1, 0 ́ , an open problem mentioned in [ET96, 2.3.1]. It turns out that the results shed new light upon the...

متن کامل

Function Spaces of Lizorkin-triebel Type with Exponential Weights

Let S = S(R n) be the Schwartz space of all rapidly decreasing C 1 functions. All function spaces that occur here are deened on R n. Therefore, we omit the suux R n in S(R n) as well as in the other spaces below. Let D be the space of all compactly supported C 1 functions equipped with the usual topology. By S 0 and D 0 we denote the strong topological dual spaces of S and D, respectively. For ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Inequalities & Applications

سال: 2017

ISSN: 1331-4343

DOI: 10.7153/mia-20-28